longitudinal parity - définition. Qu'est-ce que longitudinal parity
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est longitudinal parity - définition

BIT ADDED TO A BINARY STRING TO ENSURE THAT THE SUM OF THE BIT VALUES IS EVEN OR ODD; USED AS AN ERROR DETECTING CODE
Check bit; Parity Bit; Parity check; Parity (telecommunication); Even parity; Odd parity; Odd Parity; Even Parity; Parity checking; Check bits; Parity block; Parity error; Parity Error; Parity checking bit; Parity bits; Parity code; Bit interface parity

longitudinal parity      
<storage, communications> An extra byte (or word) appended to a block of data in order to reveal corruption of the data. Bit n of this byte indicates whether there was an even or odd number of "1" bits in bit position n of the bytes in the block. The parity byte is computed by XORing the data bytes in the block. Longitudinal parity allows single bit errors to be detected. (1996-03-01)
Parity (physics)         
FLIP IN THE SIGN OF ONE SPATIAL COORDINATE, IN CLASSICAL AND QUANTUM PHYSICS
P-symmetry; Parity laws; Intristic parity; Parity transformation; Parity violation; Conservation of parity; Parity conservation; Conservation of Parity; P symmetry; Parity (quantum mechanics); Parity symmetry; Space reflection symmetry; P violation; Gerade; Parity Violation; P-parity; Parity Reversal Symmetry; Parity Conservation; Parity inversion; Space inversion symmetry; Parity operator; Parity violating
In quantum mechanics, a parity transformation (also called parity inversion) is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection):
Longitudinal study         
STUDY WITH REPEATED OBSERVATIONS OVER TIME
Longitudinal studies; Longitudinal survey; Panel study; Longitudinal Research; Longitudinal sample; Longitudinal design; Longitudinal Data; Longitudinal prediction; Longitudinal surveys; Longitudinal method; Longitudinal research; Follow-up study; Long-term follow-up study; Longitudinal evidence; Panel studies
A longitudinal study (or longitudinal survey, or panel study) is a research design that involves repeated observations of the same variables (e.g.

Wikipédia

Parity bit

A parity bit, or check bit, is a bit added to a string of binary code. Parity bits are a simple form of error detecting code. Parity bits are generally applied to the smallest units of a communication protocol, typically 8-bit octets (bytes), although they can also be applied separately to an entire message string of bits.

The parity bit ensures that the total number of 1-bits in the string is even or odd. Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number. If the count of 1s in a given set of bits is already even, the parity bit's value is 0. In the case of odd parity, the coding is reversed. For a given set of bits, if the count of bits with a value of 1 is even, the parity bit value is set to 1 making the total count of 1s in the whole set (including the parity bit) an odd number. If the count of bits with a value of 1 is odd, the count is already odd so the parity bit's value is 0. Even parity is a special case of a cyclic redundancy check (CRC), where the 1-bit CRC is generated by the polynomial x+1.